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Summary

The ability for path integration and the potential to enable vector-based navigation lend grid 
cells to provide the base for a cognitive map in the sense of Tolman. But the accumulation of 
path integration errors impedes the formation of a consistent map. This is a well-known 
challenge in the problem of simultaneous localization and mapping (SLAM). One of the 
attempts to overcome the problem of error accumulation is to divide the environment into 
smaller regions where the error is negligible.

Recordings from the medial entorhinal cortex (MEC) of rats show that they also form 
fragmented spatial maps reminiscent of the local maps above: The neural activity of grid cells 
while running through a 1-dimensional maze of zig-zagged compartments (hairpin maze) 
showed repetitive firing patterns across arms with similar running directions implying that the 
grid representation was fragmented into repeating submaps (Derdikman et al.). Interestingly 
the fragmentation occurred irrespective of the type of wall, including transparent walls, 
suggesting that it depends on features encoding navigational affordances as they are encoded 
by boundary vector cells for instance. 

Another indication for the fragmentation of maps comes from the Barry lab (Carpenter et al.). 
Grid cells were recorded in an environment containing two perceptually identical compartments 
connected via a corridor. The initial firing patterns in both compartments were similar, 
suggesting a shared submap for both compartments. However, with experience, a single, 
continuous grid pattern spanning both compartments formed. The fragmentations seem to align 
with environmental features like doorways and corridors for instance. 

We interpret a realignment of the grid fields of entorhinal grid cells as a transition between 
submaps, and call it grid remapping. In contrast to typical hippocampal remapping experiments, 
in which the environment changes while the agent remains stationary, we are interested in 
remapping during exploration of a static (potentially big) environment, where observational 
changes are caused only by a change in location. 

Utility of fragmented maps 

When animals explore complex environments, their neural representations of the space 
often fragment into multiple maps. What determines these map fragmentations? 

We pose the problem of environmental map fragmentation as a problem of spatial 
clustering, and show that remapping decisions may be driven by surprise or prediction 
error augmented by navigational affordances as they are potentially encoded by 
boundary vector cells.

So far the literature on models of map fragmentation and grid remapping roughly falls 
into two categories: The first assumes that remapping is mainly driven by similarity of 
sensory observations and can only remap to regions one has visited before (Grieves et 
al., Cheung). Note that in an environment with no sensory ambiguity there would be no 
grid remapping in this case. 
The second approach considers Eigenvectors of different types of transition matrices, 
e.g. Eigenvectors of the successor representation (Stachenfeld et al.) and Eigenvectors 
of the graph Laplacian of the adjacency matrix  (Machado et al.). In both cases it is not 
clear how remapping decisions would be driven in a novel environment upon first visit 
because state transition information has yet to be collected.
In contrast, our model remaps even in an environment without sensor ambiguity and 
also in a novel environment upon first visit.

Fig: Map fragmentation of the online model. Left: Firing fields of a grid cell in the two compartment 
environment and the hairpin maze. The grid firing patterns are replicated between the two rooms (square 
shows spatial correlation between rooms). The firing fields in the hairpin maze do not form a global 
hexagonal pattern (square shows spatial autocorrelation). Right: Map fragments computed by the online 
model. Each colored pixel corresponds to a grid code that is associated with an observation vector (here 
BVCs). The fragments are colored by comparing the associated observation with a fixed reference 
observation. 
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Fig: Geometry of pose space. Left: Both circles are of the same fixed radius with respect to prediction 
similarity. Right: Isomap embedding of the pose space with respect to prediction similarity. The embedding 
illustrates that contiguous regions correspond to dense regions.
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Fig: Map fragmentation from density-based clustering. The OPTICS algorithm returns an ordering of the data 
points and their reachability. The valleys in the plot can be interpreted as clusters and the resulting segmentation 
is shown on the right.
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Fig: Similarity measure on pose space. Left: Two agents at two different poses and their field of view. The 
overlap of their observations defines a prediction similarity. Right: For a fixed pose the remaining poses are 
colored by their predictability.

Fig: Online computation of remapping signal. Left: Example path through an environment. Middle: 
Smoothed remapping signal from offline cluster computation. Right: Online remapping signal from 
comparing the BVC activity at time t with BVC activity at time t - 𝞓. We trigger a remapping event when the 
signal falls below a (potentially dynamic) threshold 𝜃. 
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Fig: Map fragmentation in MEC. Left, Middle: Firing fields of a grid cell in the environments illustrated in the 
middle column (Derdikman et al., Carpenter et al.). Right: Schematic illustration of map fragmentation. Gray 
regions illustrate submaps embedded in the neural state space of grid cells. Arrows indicate grid realignments 
which we interpret as map transitions 

In robotics a contiguous region is loosely defined as follows (Fairfield et al.): "While a robot is 
within a contiguous region, its range sensors are likely to collect measurements that lie within 
the contiguous region and unlikely to collect measurements in different regions."

Put it differently, any observation made in a contiguous regions can be inferred from any other 
observation made in that region. In that light we consider segmentations induced by clusters in 
the space of pairs of locations x and measurements z with respect to a prediction model Pr( z1 | 
z0 x0 x1). This prediction similarity is explained in the figure above. 

Our cluster algorithm of choice is OPTICS (Ankerst et al.), a density-based cluster algorithm 
that we apply to the set of locations X endowed with a similarity matrix D whose entries are 
defined by the observation model above. The segmentation for an organically shaped 
environment is shown below.

The model integrates noisy velocities estimates of an agent exploring an environment and 
updates its internal position estimate (grid cells). Additionally it stores associations between its 
position estimate and sensory observations given by a local occupancy map represented 
through a population of BVC's.

Note that contiguity is a local property, and hence we can try to compute it online. We borrow 
ideas from segmented SLAM (Fairfield et al.), and predict the current observation from an 
observation made a fixed amount of timesteps in the past. If this prediction signal falls below a 
previously fixed threshold a remapping event is triggered. At this point either a new map is 
formed, or the model has to relocate (through the associative memory) to a previously visited 
position that matches the current observation. 

The probability to remap to a previous location depends on strength of the association and 
hence is proportional to the number of visits. 
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